بایگانی برچسب: s

فرآوری میکا

ورميكوليت خام در صنايع بندرت مورد استفاده قرار مي‌گيرد. از اين رو حجم عمده ماده معرف كاني‌هاي همراه با روش‌هاي معمول جدايش از جمله شناورسازي (flotation) صورت مي‌گيرد. در مورد كانسنگ‌هاي سخت، اعمال يك مرحله خردايش قبل از شناورسازي براي جدايش كاني از سنگ ضروري است. پس از يك مرحله سرند، اجزاي كوچكتر از 65 ميلي‌متر به حوضچه رسوب منتقل شده و دانه‌هاي بزرگتر از 2 سانتي‌متر مجدداً به آسيا انتقال مي‌يابد. ذرات مابين دو اندازة فوق نيز ابتدا خشك و سپس دانه‌بندي مي‌شود (شکل 4)
مراحل فوق، اغلب در كانسارهاي بزرگ مورد استفاده قرار مي‌گيرد. با توجه به اينكه عمليات كانه‌آرايي در توليد ورميكوليت، موجب افزايش هزينه‌ به ميزان بيش از 50 درصد است، لذا انجام كانه‌آرايي بصورت وسيع قبل از انبساط پيشنهاد نمي‌شود. در اغلب موارد در كانسارهاي كوچك و متوسط مراحل جدايش باطله از ماده معدني و انبساط، همزمان است. جدايش پس از انبساط و بوسيله فشار هوا انجام مي‌گيرد.
شکل 3-2- فلوشيت كانه‌آرايي ورميكوليت
– خردايش ورميكوليت خام
مناسب‌ترين اندازه براي ذرات ورميكوليت خام، بين 3 تا 10 ميلي‌متر است. چنانكه ذكر شد دانه‌هاي درشت‌تر از 2 سانتي‌متر قبل از انبساط مي‌بايست خرد شود. علت اين امر مربوط به خاصيت ديرگدازي و رسانايي حرارتي اندك آن است، لذا در داخل كوره نمي‌تواند به صورت قطعات درشت و كلوخه انبساط يابد. از اينرو عمليات خردايش قبل از انبساط ضروري است.
براي اين منظور از انواع سنگ‌شكن‌هاي فكي، ژيراتوري، مخروطي، استوانه‌اي و ضربه‌اي با توجه به نوع كانه، قابليت خرد شدن، ميزان سايندگي، ابعاد محصول مورد نياز و ظرفيت توليد استفاده مي‌شود. بدين ترتيب ممكن است خردايش در سه يا چهار مرحله انجام شود.- پرعيارسازي (concentration)
در جدايش ورميكوليت از باطله، از خصوصيات فيزيكی و شيميايي آن استفاده مي‌شود. در پرعيارسازي ورميكوليت، بيشتر روش ثقلي بكار مي‌رود، هرچند استفاده از روشهاي ديگر همچون شناورسازي، مغناطيسي و خشك نيز معمول است.• روش ثقلي
در اين روش از تفاوت وزن مخصوص، ابعاد و شكل و بطور كلي حركت ذرات در سيال (بويژه آب) استفاده مي‌شود. ابزار مورد استفاده در اين روش شامل انواع جيگ‌ها، ميزهاي لرزان، جداكننده نواري، ناوه شستشو، مارپيچ‌ها و … است. براي پرعيارسازي ورميكوليت به روش ثقلي، استفاده از جيگ هارس ، ميزهاي لرزان و ناوه شستشو توصيه شده است.• روش شناورسازي
در اين روش مواد باطله (از جمله كاني‌هاي همچون هورنبلند، كوارتز و فلدسپار) در محيط‌هاي قليايي و در حضور متافسفات فعال شده و پس از شناور شدن توسط جمع‌كننده‌هاي آنيوني از محيط خارج مي‌شود. محلول باقيمانده، افشره ورميكوليت حاوي بيش از 93 درصد كاني است. ميزان بازيافت (recovery) ماده معدني در اين روش بين 60 تا 80 درصد است.

• روش مغناطيسي و خشك
استفاده از روش مغناطيسي براي جداسازي بيوتيت از ورميكوليت گزارش شده است. افشره حاصله منبسط شده و ساير ناخالصي آن پس از مرحله انبساط و از طريق حوضچه‌هاي رسوب جدا مي‌شود. پرعيارسازي به طريق خشك نيز صورت مي‌گيرد. در اين روش ابتدا ماده معدني در آسياب‌هاي چكشي خرد مي‌شود. سپس با اعمال جريان هوا، باطله (با وزن مخصوص بالا) در بخش‌هاي اوليه محفظه مربوطه باقي مانده و ورميكوليت در بخش‌هاي انتهايي آن تجمع مي‌يابد.

– انبساط
انبساط ورميكوليت به دو صورت حرارتي و شيميايي صورت مي‌گيرد. قبل از آغاز مرحله انبساط، لازم است تا افشره ورميكوليت كاملاً خشك شود، چرا كه وجود آب و رطوبت بر كيفيت انبساط تأثير منفي مي‌گذارد.
عمل خشك كردن بيشتر با هواي گرم (50 تا 120 درجه سانتي‌گراد) و يا با استفاده از انرژي خورشيد انجام مي‌شود. در هر حال دقت در اعمال پيوسته و يكنواخت حرارت ضروري است.

• انبساط حرارتي
انبساط حرارتي ورميكوليت در حرارت 871 تا 1093 درجه سانتي‌گراد و در مدت زمان چند ثانيه تا دو دقيقه صورت مي‌گيرد. حرارت زياد يا مدت حرارت‌دهي بيشتر موجب تبديل محصول به پولك‌هاي ريز (زير 100 مش) مي‌شود.
كوره‌هاي مورد استفاده در انبساط حرارتي ورميكوليت، به صورت عمودي يا افقي دوار است. در كوره‌هاي عمودي، ماده معدني از بالا تغذيه شده و در حين سقوط با حرارت مشعل كه در كف كوره واقع است، منبسط مي‌شود. ذرات منبسط از طريق يك بادزن به بيرون پرتاب شده و با عبور از جداكننده‌ها (classifire) در اندازه‌هاي مختلف تفكيك مي‌شود.
استفاده از كوره‌هاي افقي دوار معمول‌تر است. درجه حرارت اين نوع كوره‌ها با توجه به دانه‌بندي و مدت زمان انبساط بين 750 تا 1100 درجه سانتي‌گراد تغيير مي‌كند. بر حسب تجربه، مناسب‌ترين درجه حرارت جهت انبساط ورميكوليت در اين كوره‌ها 750 درجه سانتي‌گراد است.

• انبساط شيميايي
جهت انبساط شيميايي ورميكوليت، از محلول‌هاي مختلف از قبيل كلريد سديم، كلريد باريم، آب اكسيژنه و اسيد سولفوريك استفاده مي‌شود. شرايط و نحوه آن برحسب مصرف محصول متفاوت است.

 

 

موسکوویت

موسکوویت

موسکویت (به انگلیسی: Muscovite) با فرمول شیمیایی KAl2[(OHF)2-AlSi3O10] از مجموعه کانی هاست و به صورت فلس‌های قابل انعطاف و قابل ارتجاع که از انواع آن  می توان به هیدروموسکویت، فنژیت(Phengite)، ماری پوزیت(Mariposite) و فوشیست (Fuchsite) اشاره کرد که میزان K,H2O,Cr2O۳ در آنها متغیر است. نام موسکوویت از کلمه Moscou گرفته شده‌است. در اسیدها نامحلول است. از کانی های مشابه آن سایر میکاها هستند. دارای ترکیب شیمیائی پیچیده و متغیر سبز – زرد رنگ است و اثر خط سفید دارد. این کانی برای اولین بار در چک اسلواکی کشف شد و از نظرشکل بلور: پهن و کوتاه – منشوره ای است رنگ موسکوویت سفید، خاکستری، سفید نقره‌ای، متمایل به قهوه‌ای و متمایل به سبز است. از نظر شفافیت، شفاف – نیمه شفاف، از نظر جلا صدفی – شیشه‌ای – ابریشمی، از نظر رخ عالی، از نظر سیستم تبلور مونوکلینیک و در رده‌بندی سیلیکات است و منشأ تشکیل آن ماگمایی، پگماتیتی، هیدروترمال است.

همایند کانی‌شناسی (پارانژ) آن فلدسپات، بیوتیت، کوارتز و غیره و دگرگونی هرمی استفاده می‌شود است. کاربرد آن در صنایع الکترونیک، برای ایزولاسیون و سرامیک و غیره نیز، از نظر ژیزمان بلوری، اگرگات های فلسی، دانه‌ای، توده‌ای، کریپتوکریستالین بسیار فراوان است و بیشتر در با بلورهای بزرگ و زیبا در پگماتیت های نروژ، سوئد، روسیه، آلمان و اطریش، در هندوستان بلورهای ورقه‌ای آن تا ۵ متر مربع و تا ۸۰ تن یافت شده است یافت می‌شود.

موسکوویت (که همچنین با نام های میکای رایج،سریشم یا پتاس میکا هم شناخته می شود) یک ماده ی معدنی فیلوسیلیکات آلومنیوم و پتاسیم با فرمول KAl2(AlSi3O10)(F,OH)2 یا (KF)2(Al2O3)(SiO2)6(H2O) می باشد. موسکوویت رخ بسیار بارز، قابل ملاحظه و ورقه ای دارد که معمولاً قابلیت الاستیک دارد. ورقه هایی از موسکوویت به مساحت 5*3 متر در نلور هند یافت شده است.

سختی موس موسکوویت بین 2 تا 2.25 است. وزن مخصوص موسکوویت بین 2.76 تا 3 است. می تواند بی رنگ، خاکستری، قهوه ای سبز، زرد (و به ندرت) بنفش یا قرمز باشد. این کانی ناهمسان گرد است. سیستم تبلور منوکلینیک دارد. موسکوویت های سبز و غنی از کروم را با نام فوشیت می شناسند. ماریپوزیت هم یکی دیگر از موسکوویت های غنی از کروم است.

موسکوویت رایج ترین میکایی است که در گرانیت های ،پگماتیت ها،گنایس ها و شیست ها یافت می شوند. همچنین موسکوویت به عنوان یک سنگ دگرگونی تماس (a contact metamorphic rock) و یا به عنوان یک ماده ی معدنی ثانویه ی ناشی از تغییر (Alteration) توپاز، فلدسپار وکینایت هم شناخته می شود. در پگماتیت ها معمولاً موسکوویت در ورقه های عظیم تجاری-با ارزش یافت می شوند. موسکوویت برای تولید مواد عایق، ضد حریق و تا حدی به عنوان یک روان کننده مورد استفاده قرار می گیرد. نام موسکوویت از شیشه های موسکوی (Muscovy glass) برگرفته شده است. دلیل این نامگذاری این است که در گذشته در کشور روسیه از این کانی برای ساختن پنجره استفاده می شد.

 

میکا(mica) در لنت سازی

میکا(mica) در لنت سازی
در گذشته از آزبست به عنوان مواد پرکننده در لنت استفاده می شده که سرطان زا بودن ترکیبات آزبست بر هیچ کس پوشیده نیست و تمام کشورهای دنیا اذعان دارند افرادی که به طور مداوم با آزبست و ترکیبات حاوی این کانی در تماس هستند ، دچار عوارض و بیماری های لاعلاجی مانند سرطان می شوند. هنگام ترمزهای شدید که بوی لنت ترمز استشمام می شود ، در واقع ذرات آزبست موجود در لنت در هوا پراکنده و با تنفس وارد ریه ها می شود.
یکی از مهمترین مواد پرکننده معدنی در صنعت لنت سازی میکا می باشد که به منظور افزایش آثار اصطکاکی ، افزایش مقاومت مکانیکی و حرارتی و جلوگیری از خوردگی سریع صفحه دیسک و بالا بردن استحکام استفاده می شود.
شرکت زمین کاو افتخار دارد باقیمت مناسب و کیفیت عالی محصول ، در خدمت تولید کنندگان محترم باشد

ZaminKav Co.


info@zaminkav.com
تلفن : 3-88385541-021
تلفن: 88385601-3-021
فکس: 88385096-021

 

میکا(mica) در کاغذ سازی

یکی از مهمترین مواد پرکننده معدنی در صنعت کاغذ سازی میکا می باشد . خصوصیات کاغذ توسط مواد پرکننده کنترل می‌شود. مواد پرکننده به میزان 2 تا 4 درصد به دیگر مواد اضافه می‌شوند. شفافیت ، براق بودن ، ماتی رنگ و میزان جذب نور از خصوصیات مهم کاغذ است . مواد پرکننده صفحه ای ( میکا مسکویت ) باعث براق بودن کاغذ و پرکننده رنگی سبب مات شدن رنگ کاغذ می شود . میزان جذب و پخش جوهر به شکل و اندازه ذرات میکا بستگی دارد. ذرات صفحه‌ای و کوچک میکا میزان جذب جوهر را کاهش می‌دهند.

میکا(mica) در رنگ سازی

یکی از مهمترین مواد پرکننده معدنی در صنعت رنگ میکا می باشد . کیفیت ، خصوصیات نوری و مکانیکی رنگ به مواد پرکننده بستگی دارد . میکا میزان نور انعکاسی را افزایش می دهد در نتیجه رنگ براق میشود . پوشش یکنواخت جسم رنگ شده و سهولت استفاده از آن بستگی به غلظت رنگ دارد و میکا باعث افزایش غلظت رنگ می شود . رطوبت ، سایش ، نور و مواد آلی موجب فرسوده شدن رنگ می‌شوند. میکا سبب افزایش مقاومت رنگ در مقابل رطوبت می‌شوند. نور فرا بنفش موجب اکسید شدن رنگ و دیگر مواد می‌شود. میکا باعث جذب نور فرابنفش و محدود شدن تخلخل می‌شود در نتیجه مقاومت فرسایشی را افزایش می‌دهد

شرکت زمین کاو افتخار دارد باقیمت مناسب و کیفیت عالی محصول ، در خدمت تولید کنندگان محترم باشد

ZaminKav Co.

info@zaminkav.com

تلفن : 3-88385541-021

تلفن: 88385601-3-021

فکس: 88385096-021

میکا(mica) در لاستیک سازی

میکا(mica) در لاستیک سازی

یکی از مهمترین مواد پرکننده معدنی در صنعت لاستیک سازی میکا می باشد که به منظور افزایش مقاومت مکانیکی و حرارتی ، افزایش ضریب شکل پذیری ،  افزایش مقاومت حرارتی ، کششی ، سختی و خاصیت دی الکتریک استفاده می‌شود.

شرکت زمین کاو افتخار دارد با قیمت مناسب و کیفیت عالی محصول ، در خدمت تولید کنندگان محترم باشد

ZaminKav Co.

info@zaminkav.com

تلفن : 3-88385541-021

تلفن: 88385601-3-021

فکس: 88385096-021

روش های متدوال فرآوری میکا

روش های متدوال فرآوری میکا

 ميکا را مي توان با بازدهي بالا توسط روش هاي تغليظ ثقلي بازيابي کرد، اين در حالي است که کنسانتره نهايي بيشتر در اثر اختلاف در شکل ذرات به دست مي آيد تا اختلاف در وزن مخصوص.
کنسانتره ميکا را مي توان به دو صورت تر و خشک فرآوري کرد. فرآوري ميکا در حالت تر به وسيله اسپيرال و توسط روشي به نام زيگ زاگ انجام مي گيرد.
در حالتي که کنسانتره خشک باشد، کاني در دو مرحله توسط سنگ شکن فکي خرد مي شود. بعد از سنگ شکن اول ذرات خرد شده توسط سرند به پنج بخش ابعادي مختلف تقسيم مي شوند که عبارتند از: ذرات درشت (mm65/1+) که اين ذرات براي خردايش مجدد به داخل سنگ شکن بر مي گردد. سه فراکسيون بعدي (mm 65/1+وmm 4/0+8/0وmm 15/0+4/0-) هر کدام به صورت جداگانه بر روي ميز فرآوري مي شوند تا کنسانتره نهايي به دست آيد. محصول مياني به دست آمده از هر کدام از ميزها وارد سنگ شکن دوم شده و پس از خردايش مجدداٌ سرند مي شوند تا اندازه هاي مورد نظر به دست آيد. عمده محصولات فرعي ميکا که در کارخانه هاي فرآوري توليد مي شود، عبارتند از کائولن – کوارتز و فلسپار. در بعضي از کارخانه ها همه اين محصولات توليد مي شود در حالي که در بعضي ديگر يک يا دو مورد از آنها به عنوان محصول ارائه مي شود. شيشه از نوع سيليکا مي تواند در بيشتر کارخانه هاي فرآوري ميکا با اضافه کردن مقدار کافي از کوارتز به دست آيد.
در حال حاضر ميکاهاي نوع يک در امريکا از پگماتيت ها و ميکاشيست هاي هوازده به دست مي آيند. در اين مورد معدنکاري به صورت روباز انجام مي گيرد. در مورد مواد نرم از شاول، اسکراپر و لودر براي انتقال مواد استفاده مي شود. در اغلب موارد کائولن، کوارتز و فلسپار همرا ميکا بازيابي مي شوند.
در مورد استخراج ميکا از سنگ هاي سخت احتياج به عمليات حفاري و آتشباري مي باشد. بعد از عمليات آتشباري مواد به دست آمده توسط آسيا خرد مي شوند و سپس توسط کاميون به کارخانه فرآوري جهت بازيابي ميکا، کوارتز و فلدسپار فرستاده مي شود.

مشخصات فيزيكي و مكانيكي میکا

 كانيهاي خانواده ميكا از سيليكاتهاي صفحه اي(ورقه اي شکل) با ترکيبات فيزيکي و شيميايي مختلف تشکيل شده اند كه شامل موسكوويت، بيوتيت، فلوگوپيت، لپيدوليت و ناترونيت مي گردند. موسكوويت، مهمترين و فراوانترين كاني صفحه اي به شمار مي رود. موسكوويت ورقه اي در پگماتيتها و نوع پولكي در گرانيت، پگماتيتها و شيستها پيدا مي شود. ليپدوليت در پگماتيتهاي غني از ليتيوم تشكيل مي شود. فلوگوپيت به صورت رگه اي و توده اي در پيروكسنيت ها و اسكارنهاي منيزيم دار گزارش شده است.
کاني هاي گروه ميکا که از نظر اقتصادي داراي اهميت هستند به صورت زير طبقه بندي مي گردند:
-موسكوويت، پتاسيم ميکا (به رنگ سبز يا ياقوتي) 3 H2KAl3(SiO4)
-بيوتيت، منيزيم آهن ميکا (به رنگ تيره)Mg,Fe)3 Al(SiO4)3 ) (H2K)
-فلوگوپيت منيزيم ميکا (زرد، قهوه اي تيره) H2K(Mg)3Al(SiO4)3
-ورميکوليت، بيوتيت آبدار (زرد برتري)
-ليپيدوليت، ليتيوم ميکا (زرد کم رنگ) KLi Al(OH,F)2Al(SiO4)3
سيستم بلوري اين کاني ها منوکلينيک است. اين گروه از کاني ها داراي ترکيبات مختلفي از سيليکات آلومينيم آهن، منيزيم و ميکا هستند. حضور فلوئورين، باريم، منگنز، واناديم نيز در اين کاني ها گزارش شده است. از بين اين کاني ها، موسکوويت به خاطر خواص فيزيکي، شيميايي، حرارتي و مکانيکي استثنايي که دارد، در صنعت کاربرد فراوان دارد. ورميکوليت و فلوگوپيت هم مانند ميکا از اهميت برخوردار هستند. از بيوتيت به ندرت در مصارف صنعتي استفاده مي شود.
از نظر کاني شناسي کاني هاي گروه ميکا به سه گروه تقسيم مي شوند که عبارتند از:
گروه اصلي ميکا، گروه ميکاهاي شکننده و گروه کلريتي. همه کاني هاي اين گروه ها داراي ساختمان منوکلينيک هستند. ساختار ميکا ترکيبي از دو لايه تتراهدرال سيليکا و يک لايه اکتاهدرال مرکزي است.ترکيب و خواص فيزيکي و شيميايي انواع مختلف ميکا در جدول 1 ارائه شده است.


جدول1- ترکيب و خواص فيزيکي و شيميايي انواع مختلف ميکا

مصارف عمده میکا

از بين کاني هاي ميکا، موسکوويت به خاطر خواص فيزيکي، شيميايي، حرارتي و مکانيکي استثنايي که دارد، در صنعت کاربرد فراوان دارد. ورميکوليت و فلوگوپيت هم مانند ميکا از اهميت برخوردار هستند. از بيوتيت به ندرت در مصارف صنعتي استفاده مي شود.
موسكوويت نوع صفحه اي در الكترونيك(خازن ها و لامپ ها)، ساختن ورقه 84 و همچنين به دليل خاصيت دي الكتريك آن در ساخت لوازم عايق حرارتي و الکتريکي كاربرد دارد. به علت مقاومت بالاي حرارتي و شفاف بودن آن، در پنجره هاي كوره هاي الكتريكي از مسكويت بهره مي گيرند.
موسكوويت نوع پولكي بيشتر براي ساختن صفحه هاي ميكايي به كار مي رود. مصارف بيشتر موسكوويت پولكي عبارتند از : پركننده در سيمان، آسفالت و رنگ، تزيين بتن، جلوگيري از گيركردن مته ها به هنگام حفاري، و نوع بسيار دانه ريز مسكويت براي بالا بردن مقاومت رنگ در برابر رطوبت، چسبندگي و فرسايش به كار مي رود.
ميکاي ورقه اي با کيفيت بالا، عمدتاٌ مسکويت، در بسياري از صنايع خصوصاٌ الکتريسيته به کار مي رود. اين امر به دليل آن است که اين کاني داراي مقاومت دي الکتريک بالاست. همچنين استفاده از اين کاني از اتلاف انرژي جلوگيري مي کند. از ديگر مشخصه هاي اين کاني حساسيت الکتريکي بالا و ضريب حرارتي پايين مي باشد.علاوه بر اين خصوصيات، ميکا در دماي بالا مقاوم باقي مي ماند.
پنجره هايي که از ميکا ساخته مي شود داراي مقاومت مکانيکي بالايي هستند و از هدر رفتن انرژي جلوگيري مي کنند. انواع ميکا داراي ضريب دي الکتريک بين 5 تا7 است. به طوريکه ازآن مي توان در ساختن خازن استفاده کرد. خواص الکتريکي و مکانيکي بالاي ميکا همراه با چسبندگي کم و همچنين توانايي دور کردن گرما از خود باعث شده است که از آن در ساختن ترانزيستور استفاده شود و از ميکا ها با ضخامت 1/0 ميلي متر براي ساختن پوشش براي سيم ها استفاده مي شود. کاربرد اين سيم ها بيشتر در مبدل هاي الکتريکي است، که باعث کوچک تر شدن و سبک تر شدن آنها مي شود.
مقاومت بالاي ميکا درمقابل گرما، چگالي کم و مقاومت مکانيکي بالاي آن باعث شده است که از آن در ساختن مقاومت هاي الکتريکي استفاده شود. همچنين ميکا، به دليل بالا بودن کيفيت در توليد ليزرهاي هليوم نئون فيلترهاي اپتيکي مخصوص، آسترها و پوشش براي شيشه هايي که بايد فشار بالاي بخار را تحمل کنند، ساخت ديافراگم براي وسايل تنفس اکسيژن، وسايلي جهت رديابي و همچنين وسايلي براي سنجش گرما استفاده مي شود.
تحقيقات و آزمايش هاي اخير نشان داده است که از ميکا مي توان در ساخت محدوده وسيعي از وسايل مانند ساختن پرده هاي پنکه هاي هوايي، ساخت داشبورد ماشين و کف پوش استفاده کرد. همچنين از آن به عنوان جانشيني براي آزبست در ساخت ترمز ماشين استفاده مي شود.
جايگزين ها
ميکا را به دليل خواص فيزيکي و مکانيکي بالايي که دارد، در بسياري از مصارف صنعتي استفاده مي کنند و شايد بتوان گفت که جايگزيني براي آن وجود نداشته باشد. اما در بعضي موارد شن و تالک به جاي آن مورد استفاده قرار مي گيرند (مانند پوشش سقف ها). از فايبر گلاس در موارد محدودي به جاي ميکا در ساختن پلاستيک هاي مخصوص استفاده مي شود